PRINTABLE VERSION

Quiz 7

You scored 0 out of 100

c)
$$(\sqrt{2}, -4\sqrt{2})$$

d) $(-2\sqrt{2}, 2\sqrt{2})$

e) ($\sqrt{2}$, $-\sqrt{2}$)

Question 3

You did not answer the question.

Give all possible polar coordinates for the point (4 , $4\sqrt{3}$) given in rectangular coordinates.

a)
$$\begin{bmatrix} 8 & \frac{1}{3}\pi + 2n\pi \\ 1 & \frac{1}{3}\pi + 2n\pi \end{bmatrix}$$
, $\begin{bmatrix} -8 & \frac{4}{3}\pi + 2n\pi \\ 1 & \frac{1}{3}\pi + 2n\pi \end{bmatrix}$
b) $\begin{bmatrix} 16 & \frac{1}{3}\pi + 2n\pi \\ 1 & \frac{1}{3}\pi + 2n\pi \end{bmatrix}$, $\begin{bmatrix} -16 & \frac{4}{3}\pi + 2n\pi \\ 1 & \frac{1}{3}\pi + 2n\pi \end{bmatrix}$
c) $\begin{bmatrix} 4 & -\frac{1}{3}\pi + 2n\pi \\ 1 & \frac{1}{3}\pi + 2n\pi \end{bmatrix}$, $\begin{bmatrix} -4 & -\frac{4}{3}\pi + 2n\pi \\ 1 & \frac{1}{3}\pi + 2n\pi \end{bmatrix}$
d) $\begin{bmatrix} -8 & \frac{1}{3}\pi + 2n\pi \\ 1 & \frac{1}{3}\pi + 2n\pi \end{bmatrix}$, $\begin{bmatrix} 8 & \frac{4}{3}\pi + 2n\pi \\ 1 & \frac{1}{3}\pi + 2n\pi \end{bmatrix}$

Question 4

You did not answer the question.

Find the point symmetric to $\begin{bmatrix} 1 \\ -\frac{1}{4} \end{bmatrix} = \frac{1}{4} \pi$] about the y-axis.

a)
$$\begin{bmatrix} 2 & \frac{5}{4} & \pi \\ \end{bmatrix}$$

b) $\begin{bmatrix} 1 & \frac{5}{4} & \pi \\ \end{bmatrix}$
c) $\begin{bmatrix} -1 & -\frac{1}{4} & \pi \\ \end{bmatrix}$
d) $\begin{bmatrix} 2 & \frac{1}{4} & \pi \\ \end{bmatrix}$
e) $\begin{bmatrix} -1 & \frac{3}{4} & \pi \end{bmatrix}$

Question 5

You did not answer the question.

Write the equation in polar coordinates.

$$x^{2} + (y - 5)^{2} = 25$$

a) • $r = 10 \cos(\theta)$

b) • $r = 5 \sin(\theta) + 25$

c) • $r = 25$

d) • $r = 5 \cos^{2}(\theta) \sin(\theta)$

e) • $r = 10 \sin(\theta)$

Question 6

You did not answer the question.

Write the equation in polar coordinates.

 $(x - 7)^{2} + y^{2} = 49$

a) • $r = 7 \sin(\theta) + 49$

b) • $r = 14 \sin(\theta)$

c) • $r = 14 \sin(\theta)$

d) • $r = 7 \cos^{2}(\theta) \sin(\theta)$

e) • $r = 49$

Question 7

You did not answer the question.

Write the equation in rectangular coordinates.

 $2r\cos(\Theta) = 9$

a) $x^2 = 9$ b) $y = \frac{9}{2}$

You did not answer the question.

Write the equation in rectangular coordinates.

 $r = 6 \sin(\theta)$

a)
$$x^{2} + y^{2} = 6$$

b) $x^{2} + y^{2} = 36$
c) $y = x^{2} + 6$
d) $x = y + 6$
e) $x^{2} + y^{2} = 6y$

Question 9

You did not answer the question.

Which of the following shows the correct sketch of the given polar curve?

$$r = \frac{9}{2} - \frac{9}{2}\cos(\theta)$$

You did not answer the question.

Calculate the area of the given region:

Calculate the area of the given region:

 $r = 22 \cos(\Theta)$

You did not answer the question.

Which of the following represents the area outside r = 12, but inside $r = 24 \sin(\theta)$?

a)
$$\int_{\frac{1}{6}\pi}^{\frac{5}{6}\pi} \frac{1}{2} \left((12)^2 - (24\sin(\theta))^2 \right) d\theta$$

b)
$$\int_{\frac{1}{6}\pi}^{\frac{5}{6}\pi} \frac{1}{2} \left((24\sin(\theta))^2 - (12)^2 \right) d\theta$$

c)
$$\int_{\frac{1}{4}\pi}^{\frac{3}{4}\pi} \frac{1}{2} \left((24\sin(\theta))^2 - (12)^2 \right) d\theta$$

$$d) = \int_{\frac{1}{3}\pi}^{\frac{2}{3}\pi} \frac{1}{2} \left(\left(24 \sin(\theta) \right)^2 - (12)^2 \right) d\theta$$
$$\int_{\frac{1}{3}\pi}^{\frac{2}{3}\pi} \frac{1}{2} \left((12)^2 - \left(24 \sin(\theta) \right)^2 \right) d\theta$$
$$e) = \int_{\frac{1}{3}\pi}^{\frac{2}{3}\pi} \frac{1}{2} \left((12)^2 - \left(24 \sin(\theta) \right)^2 \right) d\theta$$

You did not answer the question.

Which of the following represents the area inside r = 5, but outside $r = 10 \cos \theta$?

$$a) \qquad \int_{\frac{1}{3}\pi}^{\frac{1}{2}\pi} \frac{1}{2} \left((5)^{2} - (10\cos(\theta))^{2} \right) d\theta$$

$$a) \qquad 2 \left(\int_{\frac{1}{3}\pi}^{\frac{1}{2}\pi} \frac{1}{2} \left((5)^{2} - (10\cos(\theta))^{2} \right) d\theta \right) + 2 \left(\int_{\frac{1}{2}\pi}^{\pi} \frac{1}{2} \left((5)^{2} \right) d\theta \right)$$

$$b) \qquad \int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} \frac{1}{2} \left((5)^{2} - (10\cos(\theta))^{2} \right) d\theta$$

$$c) \qquad 2 \left(\int_{\frac{1}{3}\pi}^{\frac{1}{2}\pi} \frac{1}{2} \left((5)^{2} - (10\cos(\theta))^{2} \right) d\theta \right) - \left(\int_{\frac{1}{2}\pi}^{\pi} \frac{1}{2} \left((5)^{2} \right) d\theta \right)$$

$$d) \qquad \qquad \int_{\frac{1}{3}\pi}^{\frac{1}{2}\pi} \frac{1}{2} \left((5)^{2} - (10\cos(\theta))^{2} \right) d\theta + \int_{\frac{1}{2}\pi}^{\pi} \frac{1}{2} \left((5)^{2} \right) d\theta$$

$$e) \qquad \qquad \int_{\frac{1}{3}\pi}^{\frac{1}{2}\pi} \frac{1}{2} \left((5)^{2} - (10\cos(\theta))^{2} \right) d\theta + \int_{\frac{1}{2}\pi}^{\pi} \frac{1}{2} \left((5)^{2} \right) d\theta$$

Question 19

You did not answer the question.

Which of the following represents the area inside the inner loop of $r = 8 - 16 \sin(\theta)$?

$$\int_{\frac{1}{4}\pi}^{\frac{3}{4}\pi} \frac{1}{2} (8 - 16 \sin(\theta))^{2} d\theta$$

a)
$$\int_{\frac{1}{4}\pi}^{\frac{2}{3}\pi} \frac{1}{2} (8 - 16 \sin(\theta))^{2} d\theta$$

b)
$$\int_{\frac{1}{3}\pi}^{\frac{5}{6}\pi} \frac{1}{2} (8 - 16 \sin(\theta))^{2} d\theta$$

c)
$$\int_{\frac{1}{6}\pi}^{\frac{4}{3}\pi} \frac{1}{2} (8 - 16 \sin(\theta))^{2} d\theta$$

d)
$$\int_{\frac{1}{3}\pi}^{\frac{7}{6}\pi} \frac{1}{2} (8 - 16 \sin(\theta))^{2} d\theta$$

e)
$$\int_{\frac{1}{6}\pi}^{\frac{7}{6}\pi} \frac{1}{2} (8 - 16 \sin(\theta))^{2} d\theta$$

Question 20

You did not answer the question.

Which of the following represents the area interior to both $r = 8 - 8 \sin(\theta)$ and $r = 8 \sin(\theta)$?

$$2\left(\int_{0}^{\frac{1}{3}\pi} \frac{1}{2}\left(8\sin(\theta)\right)^{2}d\theta + \int_{\frac{1}{3}\pi}^{\frac{1}{2}\pi} \left(8-8\sin(\theta)\right)^{2}d\theta\right)$$

a)

$$\int_{0}^{\frac{1}{6}\pi} \frac{1}{2} (8\sin(\theta))^{2} d\theta + \int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} \frac{1}{2} (8-8\sin(\theta))^{2} d\theta$$

b)

$$2 \left(\int_{0}^{\frac{1}{6}\pi} \frac{1}{2} (8\sin(\theta))^{2} d\theta + \int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} \frac{1}{2} (8-8\sin(\theta))^{2} d\theta \right)$$

c)

$$2 \left(\int_{0}^{\frac{1}{4}\pi} \frac{1}{2} (8-8\sin(\theta))^{2} d\theta + \int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi} \frac{1}{2} (8\sin(\theta))^{2} d\theta \right)$$

d)

$$2 \left(\int_{0}^{\frac{1}{6}\pi} \frac{1}{2} (8-8\sin(\theta))^{2} d\theta + \int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi} \frac{1}{2} (8\sin(\theta))^{2} d\theta \right)$$

e)

$$2 \left(\int_{0}^{\frac{1}{6}\pi} \frac{1}{2} (8-8\sin(\theta))^{2} d\theta + \int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} \frac{1}{2} (8\sin(\theta))^{2} d\theta \right)$$